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ABSTRACT 

This paper presents two video copy detection systems built for the 

TRECVID 2010 content-based copy detection task. Three runs 

were submitted using video-only content. Two systems differ in 

terms of the feature design as well as the matching scheme. In this 

paper we overview the underlying methodologies and discuss the 

various design choices for developing a practical video copy 

detection system. 
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1. INTRODUCTION 
With increasing bandwidth available to average users and the 

exploding popularity of social media, digital video availability has 

grown exponentially through the use of online distribution 

technologies such as web-TV, video blogs, and video sharing 

websites. To manage video contents and to protect intellectual 

properties, Content-based Copy Detection (CCD) techniques 

provide an alternative approach to watermarking for identifying 

video sequences from the same source. Based on content alone, 

CCD attempts to identify segments in a query video that are 

copies from a reference video database. A copy is not an exact 

duplicate but, in general, either a transformed or a modified 

version of the original document that remains recognizable [2][1]. 

Transformations to digital content such as cropping and inserting 

logos are frequently performed and the resulting near-duplicates 

could be different from the source in terms of not only formats, 

but also content [7]. 

TRECVID (TREC Video Retrieval Evaluation) is sponsored by 

the National Institute of Standards and Technology (NIST) with 

the goal of encouraging research in information retrieval by 

providing a large test collection, uniform scoring procedures, and 

a forum for organizations interested in comparing their results. 

Since 2008, TRECVID has organized the copy detection task 

which initially used the CIVR 2007 Muscle benchmark. In 2010, 

only one sort of query is tested: audio + video. The video 

transformation includes: 

T2: Picture in picture type 1 

T3: Insertions of pattern 

T4: Strong re-encoding 

T5: Change of gamma 

T6: Decrease in quality: a mixture of three transformations among 

blur, change of gamma, frame dropping, contrast, compression, 

ratio, white noise 

T8: Post production: a mixture of three transformations among 

crop, shift, contrast, caption, flip, insertion of pattern, picture in 

picture type 2 

T10: Combinations of transformations chosen from T2 to T8  

In this paper we describe two systems that used solely visual data 

but different strategies for detecting copy segments given a query 

video and a reference video dataset. The first system—the NTNU 

CCD system — employed a global visual descriptor that were 

extracted from each sampled frame and a voting-based matching 

approach to identify the copy segments based on visual features. 

The second system—the Academia Sinica CCD system—applied 

a local-feature-based representation and a sliding-window 

matching scheme. We submitted three video based runs: one for 

the NoFA and two for the balanced profile. The evaluation shows 

some interesting results on the performance comparison of our 

different feature designs and matching schemes; nevertheless, 

more effort is required to further improve the effectiveness of our 

system by including audio features. 

2. NTNU VIDEO COPY DETECTION 
The overview of the NTNU video copy detection system is 

illustrated in Fig. 1. First, a video is partitioned into a sequence of 

frames. For simplicity, we sampled one frame per second in our 

system. Next, we applied a simple method based on edge 

information summarized in an averaged frame to detect letterbox 

and picture in picture (Section 2.1). Each frame is then 

summarized by a descriptor that calculates pair-wise content 

proximity over a pre-defined grid (Section 2.2). We used the χ2 

statistics for comparing two frame descriptors. Finally, we applied 

a vote-based approach to determine the dissimilarity between each 

query video and the reference videos (Section 2.3) and retrieved 

the most similar video segment for each query video as our CCD 

results.  

2.1 Letterbox and PinP Detection 
Adding borders on video frames is one of the most common 

transformations made to a copy, as well as one of the 

transformations evaluated by TRECVID CCD task. We first 

remove the borders using a simple, heuristic method similar to 

that in [3].   

We rely on the edge information and the temporal intensity 

variance of pixels to detect letterbox. The idea is that boarder 

areas usually have consistent pixel intensities in the frame 

sequence. For a video clip, we calculate the mean frame and apply 

the Sobel edge detector on the mean frame. We then project the 

edge pixels into the x and the y axis and determine the peak value 

respectively. The boundary between the frame content and the 

border is detected if the number of edge points on a particular line 

is more than a threshold and the variance of the pixel values of the 

border is small. This suggests a plain and narrow area exists. 

Furthermore, the aspect ratio of resulting frame and the 



percentage of the video pixels are verified. Figure 2 shows a few 

examples of the procedure, where red lines indicate the range of 

resulting frame. A similar procedure can be used to detect picture-

in-picture type of frames with setting a different constraint on the 

locations of the boundary. 

 

Figure 1. Overview of the NTNU video copy detection system 

 

Figure 2. Examples of letterbox detection. 

2.2 Frame Descriptor 
A good frame descriptor should be distinctive for reliably 

distinguishing one frame of interest from others, compact, and 

robust with respect to transformations and random noises. In this 

subsection, we briefly describe our design of frame descriptor. 

Our descriptor is constructed by firstly dividing each frame into a 

K by K equal-sized grid. We then compute the content proximity 

for each pair of blocks. Fig. 3 (a) shows an example using K = 2. 

Notice that the diagonal entries have a value of ones and the 

correlation matrix is symmetric. We extract the upper triangular 

part of the matrix and have our descriptor of K2 (K2-1) ∕ 2 

dimensions.  

For simplicity, we define the content proximity between block Xi 

and block Xj  as: 



w(i, j)  exp(
1

A
D(X i,X j )),           (1) 

where D(Xi, Xj) is the sum of square differences (SSD) between 

block pixels1 and A is a scaling parameter. Fig. 3 (b) shows the 

proximity matrix of the left image. In our system, we divide a 

frame into 4x4 blocks, resulting in a 120-d descriptor. 

                                                                 

1 We computed the averaged value using the CIE L*a*b* space.  

 

Figure 3. The frame descriptor based on pair-wise 

correlations between predefined blocks. 

  

Figure 4. The dot plot for frame fusion 

2.3 Frame Fusion 
Given two frame descriptors, we use the χ2 statistics for 

comparing two frame descriptors. Theχ2 statistics is defined as:  

          
       

 

     
   (2) 

For a query video, we calculated the pair-wise distances between 

every frame of a query video and those of the reference videos. 

Although a number of strategies can be applied to accelerate the 

matching process, we implemented a naïve approach which 

compares all descriptors in our database to each query frame 

descriptor. We set a threshold on the distance and identify those 

matching frame pairs if their distance is below the threshold. After 

we obtain the matching frame pairs between the query video and 

the reference videos, we can easily determine the candidate video 

copy segments as follows.  

We first create a visual method called a dot plot. A dot plot puts a 

dot at (i, j) in an m by n matrix if the descriptor i and descriptor j 

are matched. Figure 4 shows an example of the dot plot. The dot 

plot is extremely sparse even if two videos under comparison are 

partially related. Similar to the method in [1], the copy segments 

are then identified by computing the timestamp difference 

            of these dots. We find all matching pairs whose 

timestamp difference is in the range of [   δ   δ ], 

whereδis set to 5 seconds in our system. Next, we identify the 

timestamp difference   with the maximal number of votes and 

retrieve all associated frame pairs. Among these frame pairs, we 

find the smallest and the largest timestamps for the query and the 

reference video streams respectively and obtain an approximate 

matching length N. The augmented similarity score for the 

segment is simply the sum of top N scores of the matching pairs. 

To simplify the computation, we only retrieve the most relevant 

video segment for each query video based on the segment-level 

similarity scores. 



3. ACADEMIA SINICA VIDEO COPY 

DETECTION 
For our second system, we apply different strategies for frame 

sampling, descriptor extraction and frame fusion. This subsection 

briefly discusses our method for these components. 

3.1 Frame Sampling 
Extracting features from all frames of the query and the reference 

videos would be too costly and inefficient due to the temporal 

redundancy between video frames. The extraction cost can be 

significantly reduced using frame sampling. Two popular frames 

sampling schemes are uniform sampling and key-frame sampling. 

We observe that key-frame sampling doesn’t suit for video copy 

detection tasks since major key-frame detection scheme (i.e. shot 

change detection) may not be able to detect consistent frame pairs 

between the query and the reference videos. Furthermore, the 

number of key-frames is usually not sufficient to retrieve 

duplicate videos if the deformations applied on the query videos 

are strong. We therefore use uniform sampling to select a fix 

number of frames per second (5 frames per second in the system) 

for both the query and the reference videos. 

3.2 Vide Representation 
Unlike the NTNU copy detection system that uses a global feature 

for summarizing content in a frame, we apply an interest-point-

based approach and describe a frame using a set of local features. 

3.2.1 Key point extraction  
For each sampled frame, we select the local extrema in different 

Gaussian domains to be the key point candidates. First, each 

frame is transformed to a multi-scale space by convolving with 

Gaussian filters at different scales, and then each generated 

Gaussian-blurred image is subtracted with its neighbor image to 

generate the differences of Gaussian (DoG) images. Next, we 

identify key points as maxima/minima of the DoG that occur at 

multiple scales. In our implementation, we used the software of 

David Lowe with default parameters [5]. Finally, we select N+1 

key points with the highest energy of local extrema on the DoG 

domain and discard the remaining key points. Each frame is, thus, 

represented by N+1 key points. We also sort the key points based 

on their energy and the sequence of key points will be used in the 

next step for identifying interest regions. 

3.2.2 Interest region and orientation assignment 
Unlike most approaches that define so-called interest regions 

around each interest point, we use two neighboring key points in 

the sorted key point sequence to decide an interest region. Fig. 5 

shows two interest regions marked with circles, where Pi is the i-

th key point in the sorted key point sequence (i.e. Pi is the key 

point with the i-th largest energy on the DoG domain). For two 

key points P1(x1,y1) and P2(x2,y2) we find a circle with the center 

 
     

 
 
     

 
  and the radius 

        
         

 

 
  The region within 

the circle between two key points is defined as an interest region. 

Since there are N+1 key points in each frame, we have in total N 

interest regions in each frame. This is the key step to achieve 

rotational invariance since the vector between P1 and P2 can be 

used for rotation correction. Next, the orientation [5] is assigned 

to the circle region as a feature. 

 

Figure 5. The feature extraction process in the Academia 

Sinica copy detection system. 

 In the orientation assignment step, each region is assigned only 

one orientation based on local image gradient directions in the 

circle. First, the Gaussian-smoothed image         at the scale σ 

of the key point with the largest energy is taken so that all 

computations are performed in a scale-invariant manner. For an 

interest region        at scale σ, the gradient magnitude        
and orientation        are computed as follows: 

      

                     
 
                    

 
        

            
                 

                 
                       

The magnitude and orientation calculations are done for every 

pixel in the interest region in the Gaussian-blurred image L. As 

shown is Fig. 5, an orientation histogram with 36 bins is formed, 

with each bin representing 10 degrees. Each pixel in the region is 

weighted by its gradient magnitude m(x,y). After the histogram is 

constructed, the orientation corresponding to the peak that is 

denoted with the red bars in Fig. 5 is assigned to the interest 

region. The orientations of the m-th interest region in n-th frame 

of a video are collected as a matrix to represent a video sequence 

for video matching. 

3.2.3 Video presentation and temporal redundancy 

reduction 
After the orientation is assigned to each region, the video 

sequence can be represented as an M by N orientation matrix R: 

           
                      , (5) 

where M represents the number of orientations in a frame, N is the 

number of frames in a video, and      is the orientation of the m-

th interest region in the n-th frame. Since the orientation can be 

considered the direction of the interest region, the difference 

between two orientations is derived as the angle between two unit 

vectors: 



         
                                                

   
           

The difference is used in our system for video matching which is 

described in next section. 

Although the video frames are sampled as we have described in 

Section 3.1, the temporal redundancy still exists if the video is 

motionless. In order to reduce the temporal redundancy of video 

with few motions, we introduce a threshold T to remove 

orientations of unnecessary frames. If the motion between two 

neighbor frames is small, the difference of two neighboring 

orientations in the same row is also small. Thus, we can 

summarize the difference of two neighboring frame with a 

weighting vector that gives higher weight to regions of high 

energy key points. The difference between two frames can be 

computed as: 

                            
 
                       

If the difference is smaller than the threshold (i.e.            
 ), the frame corresponding to    (i.e. the n-th frame of video) is 

dropped and the orientations of whole column are removed from 

the matrix. The temporal redundancy reduction procedure is tested 

for all columns of each video’s orientation matrix. Fig.5 shows an 

example, where the second, the fourth, and the fifth columns are 

removed since each is the identical to its left column. After the 

removal, the orientation matrix is simplified and more compact. 

3.3 Video Matching 
To match the query video and the reference videos, we use a 

matching scheme for two orientation matrices that can have 

different lengths.  

Given two video sequences with the same number of frames, the 

difference between two videos can be computed as:  

                   
      

 
  

   
 
   .              (8) 

However, the lengths of the query and reference video are usually 

different. Thus, Eq. (8) cannot be directly used for evaluating the 

difference between two videos. To solve this problem, we adopt a 

sliding window strategy to divide the longer sequence into a 

number of subsequences for matching. As shown in Fig. 6, given 

a query video and a reference video with lengths p and q, 

respectively, and suppose p ≤ q, the reference video sequence is 

first divided into q-p+1 overlapped sub-sequences with the length 

of p. The difference between query video and each sub-sequence 

can then be calculated using Eq. (8). The output of matching a 

query to the reference videos is a set of tuples (ts,te,k,s), where ts 

and te are the beginning and the ending timestamp of the matched 

subsequence of the reference video, k is the index of the reference 

video, and s is the score computed by (8) with the alignment 

suggested by ts and te. If the score between the query and the sub-

sequence of the reference video k is minimum, the query is 

retrieved as a copy of the reference video k and the copy video 

segment is identified with timestamps ts and te. 

4. EVALUATION 

4.1 Dataset 
TRECVID 2010 CBCD dataset contains 11256 queries and 11524 

reference videos. For sampling a frame per second, we get more 

than 800,000 frames for the query video set and ~1,500,000 

frames for the reference video set. 

4.2 Evaluation Criteria 
The normalized detection cost rate (NDCR) is used as the measure 

for the detection performance [8]. The detection cost rate (DCR) 

is defined as: 

                               , (9) 

where CMiss and CFA are the costs of a miss and a false alarm, 

RTarget is the priori  target rate. The NDCR is defined as: 

     
   

             
            , (10) 

where                      . Results of individual 

transformations within each run are evaluated separately. The 

minimal NDCR is found for each transformation and the actual 

NDCR is computed based on the threshold we reported.  

To measure the location accuracy, the F1 measure based on the 

precision and the recall of the true video segments is used. Finally, 

the computational efficiency is measured by the mean time (in 

seconds) to process a query. 

4.3 Results 
We submitted in total 3 runs, labeled as NTNU-Academia-

Sinica.m.balanced.1 (NTNU system for balanced profile), NTNU-

Academia-Sinica.m.balanced.3 (Academia Sinica system for 

balanced profile), and NTNU-Academia-Sinica.m.nofa.2 (NTNU 

system for NoFa profile). For all runs we submit only the highest 

ranked matching video for each query. We set different threshold 

values that will be used to calculate actual NDCR for the profiles. 

As we used solely the video content, it is not reasonable to 

compare our evaluation results with those who used both the 

video and the audio data. Evaluation results show that NTNU-

Academia-Sinica.m.balanced.1 performs slightly better than 

NTNU-Academia-Sinica.m.balanced.3. In the rest of the section, 

we report the results of NTNU-Academia-Sinica.m.balanced.1 

and NTNU-Academia-Sinica.m.nofa.2. We discuss the 

implementation flaws and provide possible improvements on 

NTNU-Academia-Sinica.m.balanced.3 at the end of the section. 

Figure 6. An example of video matching in the Academia 

Sinica copy detection system. 

 



Since we used visual data alone, the accuracies of those combined 

audio+video transformations which have the same video 

transformation are identical. The actual NDCR values ranges from 

2.29 to 3.89 (NTNU-Academia-Sinica.m.balanced.1) and from 

322.21 to 2035 (NTNU-Academia-Sinica.m.nofa.2). Although we 

applied a global feature in these two runs, our system seems to be 

able to handle some of the transformations well without fine 

parameter tunings and modifications. The mean processing time 

for each query in these runs is around 110 seconds. The 

computational bottleneck is the frame-pair matching since we 

compared every sampled frame from the query video to all frames 

in the reference video set. An indexing structure for organizing 

the frame descriptors is needed to accelerate the matching process.  

By observing the results of NTNU-Academia-Sinica.m.balanced.3, 

we find that the detection accuracy of the Academia Sinia System 

equally low for every TRECVID video transformations. In 

particular, noising and blurring degrade the detection of local 

features, i.e., SIFT, significantly, and, thus, affect the subsequent 

feature descriptor extraction and matching. 

To solve the above problems as our future work, affine-SIFT [6] 

will be adopted to resist affine transforms. In addition, the blurred 

video can be viewed as a low resolution video. To match a low 

resolution video with a high resolution video, we will study the 

low-quality recognition problem [1][3] for designing elaborated 

features from low-resolution media data. 

On the other hand, we also find that the threshold T, which is 

introduced to reduce the temporal redundancy in Sec. 3.2.3, is not 

properly set for generating NTNU-Academia-Sinica.m.balanced.3. 

Thus, the temporal redundancy was not efficiently reduced in 

NTNU-Academia-Sinica.m.balanced.3. Our system incorrectly 

matches two different videos when the motions of two videos are 

both small and when the orientations are close to each other. To 

correct the problem, the threshold needs to be carefully set. 

5. CONCLUSIONS 
We developed two systems for the TRECVID 2010 content-based 

copy detection task. We have not explored any audio features 

mainly due to time constraints but more efforts is definitely 

required to further improve the effectiveness of the system by 

including audio features. Besides, we realized that the SIFT-like 

local features need to be improved for overcoming the low-quality 

recognition problem. Finally, an indexing structure for organizing 

the extracted features in the reference video set that will be 

combined with our matching schemes is required to improve the 

scalability of our approach. 
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